Molecular mechanism of distorted iron regulation in the blood-CSF barrier and regional blood-brain barrier following in vivo subchronic manganese exposure.
نویسندگان
چکیده
Previous studies in this laboratory indicated that manganese (Mn) exposure in vitro increases the expression of transferrin receptor (TfR) by enhancing the binding of iron regulatory proteins (IRPs) to iron responsive element-containing RNA. The current study further tested the hypothesis that in vivo exposure to Mn increased TfR expression at both blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier (BCB), which contributes to altered iron (Fe) homeostasis in the CSF. Groups of rats (10-11 each) received oral gavages at doses of 5 mg Mn/kg or 15 mg Mn/kg as MnCl(2) once daily for 30 days. Blood, CSF, and choroid plexus were collected and brain capillary fractions were separated from the regional parenchyma. Metal analyses showed that oral Mn exposure decreased concentrations of Fe in serum (-66%) but increased Fe in the CSF (+167%). Gel shift assay showed that Mn caused a dose-dependent increase of binding of IRP1 to iron responsive element-containing RNA in BCB in the choroid plexus (+70%), in regional BBB of capillaries of striatum (+39%), hippocampus (+56%), frontal cortex (+49%), and in brain parenchyma of striatum (+67%), hippocampus (+39%) and cerebellum (+28%). Real-time RT-PCR demonstrated that Mn exposure significantly increased the expression of TfR mRNA in choroid plexus and striatum with concomitant reduction in the expression of ferritin (Ft) mRNA. Collectively, these data indicate that in vivo Mn exposure results in Fe redistribution in body fluids through regulating the expression of TfR and ferritin at BCB and selected regional BBB. The disrupted Fe transport by brain barriers may underlie the distorted Fe homeostasis in the CSF.
منابع مشابه
Alteration at translational but not transcriptional level of transferrin receptor expression following manganese exposure at the blood-CSF barrier in vitro.
Manganese exposure alters iron homeostasis in blood and cerebrospinal fluid (CSF), possibly by acting on iron transport mechanisms localized at the blood-brain barrier and/or blood-CSF barrier. This study was designed to test the hypothesis that manganese exposure may change the binding affinity of iron regulatory proteins (IRPs) to mRNAs encoding transferrin receptor (TfR), thereby influencing...
متن کاملNimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies
Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...
متن کاملNimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies
Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...
متن کاملEffect of Nesfatin-1 on Permeability of Blood Brain Barrier, Neurological Score and Brain Edema after Traumatic Brain Injury in Male Rats: A Behavioral and Biochemical Study
Background and purpose: Traumatic brain injury (TBI) is one of the most complex diseases of the central nervous system (CNS). Nesfatin is an 82-amino acid effective polypeptide in CNS. In this study, we investigated the role of nesfatin in neuron protection in the process of diffuse concussion in rats and also its effect on the level of matrix metalloproteinase-9. Materials and methods: In thi...
متن کاملP45: The Role of Blood-Brain Barrier Breakdown Following Traumatic Brain in Post-Traumatic Epilepsy
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurotoxicology
دوره 27 5 شماره
صفحات -
تاریخ انتشار 2006